Synthetic textiles, such as polyester, are resistant to natural degradation and constitute approximately 65% of global circulating textile fibers, posing a significant environmental challenge due to their persistence in ecosystems. The global textile industry is responsible for nearly 10% of total global carbon emissions annually and increasing environmental waste. One emerging solution to the industry’s negative environmental impacts is bio-based textile materials that are biodegradable and low-carbon to reduce dependencies on petroleum oil. This paper presents the evolutionary design journey and novel development of earth- and bio-based wearable textiles, coined as BioMud Fabrics, which consist entirely of geo- and bio-based materials. The qualitative and quantitative research-by-design methodological toolkit includes material characterization analysis, microstructural analysis using scanning electron microscopy (SEM) and macro-scale structural characterization using tearing tests following ASTM D5587. The developed fabrics were then applied in a series of speculative design demonstrations with fashion design serving as a central case study. This research uniquely combines material science and engineering with exploratory fashion design and architectural practices with the goal of offering radically innovative biomaterials in an effort to shift towards a more circular material paradigm.