The touchstone of the ‘New Synthesis’ was population cytogenetics –rather than genetics – due to the abundant polymorphic inversions in the genus Drosophila. Grasshoppers were not a material of choice because of their conservative karyotypes. However, nowadays seven species of Acrididae were described for polymorphic centric fusions, five of them in South-America. Leptysma argentina and the likely biocontrol of water-hyacinth Cornops aquaticum are semiaquatic Leptysminae (Acrididae: Orthoptera), polymorphic for centric fusions, supernumerary segments and a B-chromosome. We sought to demonstrate the operation of natural selection on them, by detecting: (I) latitudinal clines; (II) regression on environmental variables; (III) deviation from null models, such as linkage equilibrium; (IV) seasonal variation; (V) comparison between age classes and (VI) selection component analyses. All of them were confirmed in L. argentina, just (I) and (II) in C. aquaticum. Furthermore, the relationship between karyotype, phenotype and recombination was confirmed in both species. Karyotype–phenotype relationship may be due to the body enlargement the fusions are associated with, along with a latitudinal transition in voltinism. Karyotype-related recombination reduction in both species may help explain all fusion clines, although there is probably more than one factor at work. No effects were noticed for a supernumerary segment in L. argentina, but it is ubiquitous and certainly non-neutral. C. aquaticum is poised for introduction in South-Africa as a biocontrol of water-hyacinths; the recent discovery of four more segment polymorphisms may imply more chromosomal markers to make sense of its genetic system.