This study depends on KIC 9641031 eclipsing binary with a chromospherically active component. There are three type variations, such as geometrical variations due to eclipses, sinusoidal variations due to the rotational modulations, and also flares, in the light curves. Taking into account results obtained from observations in the Kepler Mission Database, we discuss the details of chromospheric activity. The sinusoidal light variations due to rotational modulation and the flare events were modelled. 92 different data subsets separated using the analytic models were modelled separately to obtain the cool spot configuration. Acording to the model, there are two active regions separated by about 180° longitudinally between the latitudes of +50° and +100°. 240 flares, whose parameters were computed, were detected. Using these parameters, the OPEA model was derived, in which the Plateau value was found to be 1.232±0.069 s, and half-life parameter was found as 2291.7 s. The flare frequency N1 was found as 0.41632 h−1, while the flare frequency N2 was found as 0.00027. Considering these parameters together with the orbital period variations demonstrates that the period variations depend on chromospheric activity. Comparing the system with its analogue, the activity level of KIC 9641031 is remarkably lower than the others.