We consider the wave equation damped
with a boundary nonlinear velocity feedback p(u').
Under some geometrical conditions, we prove that the energy
of the system decays to zero with an explicit decay rate estimate
even if the function ρ has not a polynomial behavior in zero.
This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction of a special weight function
(that depends on the behavior of the function ρ in zero),
and on a new nonlinear integral inequality.