This paper extends the investigations into logical properties of the quantified argument calculus (Quarc) by suggesting a series of proper subsystems which, although retaining the entire vocabulary of Quarc, restrict quantification in such a way as to make the result decidable. The proof of decidability is via a procedure that prunes the infinite branches of a derivation tree in what is a syntactic counterpart of semantic filtration. We demonstrate an application of one of these systems by showing that Aristotle’s assertoric syllogistic is embeddable within, thus also providing another method of showing its decidability.