We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe all degenerations of three-dimensional anticommutative algebras $\mathfrak{A}\mathfrak{c}\mathfrak{o}\mathfrak{m}_{3}$ and of three-dimensional Leibniz algebras $\mathfrak{L}\mathfrak{e}\mathfrak{i}\mathfrak{b}_{3}$ over $\mathbb{C}$. In particular, we describe all irreducible components and rigid algebras in the corresponding varieties.
A basis ${\mathcal{B}}=\{u_{i}\}_{i\in I}$ of a commutative or anticommutative algebra $\mathfrak{C},$ over an arbitrary base field $\mathbb{F}$, is called multiplicative if for any $i,j\in I$ we have that $u_{i}u_{j}\in \mathbb{F}u_{k}$ for some $k\in I$. We show that if a commutative or anticommutative algebra $\mathfrak{C}$ admits a multiplicative basis then it decomposes as the direct sum $\mathfrak{C}=\bigoplus _{j}\mathfrak{i}_{j}$ of well-described ideals each one of which admits a multiplicative basis. Also the minimality of $\mathfrak{C}$ is characterised in terms of the multiplicative basis and it is shown that, under a mild condition, the above direct sum is indexed by the family of its minimal ideals admitting a multiplicative basis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.