We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $n,r,k\in \mathbb{N}$. An $r$-colouring of the vertices of a regular $n$-gon is any mapping $\unicode[STIX]{x1D712}:\mathbb{Z}_{n}\rightarrow \{1,2,\ldots ,r\}$. Two colourings are equivalent if one of them can be obtained from another by a rotation of the polygon. An $r$-ary necklace of length $n$ is an equivalence class of $r$-colourings of $\mathbb{Z}_{n}$. We say that a colouring is $k$-alternating if all $k$ consecutive vertices have pairwise distinct colours. We compute the smallest number $r$ for which there exists a $k$-alternating $r$-colouring of $\mathbb{Z}_{n}$ and we count, for any $r$, 2-alternating $r$-colourings of $\mathbb{Z}_{n}$ and 2-alternating $r$-ary necklaces of length $n$.
If a hyperbolic link has a prime alternating diagram $D$, then we show that the link complement's volume can be estimated directly from $D$. We define a very elementary invariant of the diagram $D$, its twist number $t(D)$, and show that the volume lies between $v_3(t(D) - 2)/2$ and $v_3(10t(D) - 10)$, where $v_3$ is the volume of a regular hyperbolic ideal 3-simplex. As a consequence, the set of all hyperbolic alternating and augmented alternating link complements is a closed subset of the space of all complete finite-volume hyperbolic 3-manifolds, in the geometric topology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.