We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The present paper aims at stressing the importance of the Hofmann–Streicher groupoid model for Martin Löf Type Theory as a link with the first-order equality and its semantics via adjunctions. The groupoid model was introduced by Martin Hofmann in his Ph.D. thesis and later analysed in collaboration with Thomas Streicher. In this paper, after describing an algebraic weak factorisation system
$$\mathsf {L, R}$$
on the category
$${\cal C}-{\cal Gpd}$$
of
$${\cal C}$$
-enriched groupoids, we prove that its fibration of algebras is elementary (in the sense of Lawvere) and use this fact to produce the factorisation of diagonals for
$$\mathsf {L, R}$$
needed to interpret identity types.
We introduce type-theoretic algebraic weak factorisation systems and show how they give rise to homotopy-theoretic models of Martin-Löf type theory. This is done by showing that the comprehension category associated with a type-theoretic algebraic weak factorisation system satisfies the assumptions necessary to apply a right adjoint method for splitting comprehension categories. We then provide methods for constructing several examples of type-theoretic algebraic weak factorisation systems, encompassing the existing groupoid and cubical sets models, as well as new models based on normal fibrations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.