We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We invoke the classical fact that the algebra of bi-invariant forms on a compact connected Lie group G is naturally isomorphic to the de Rham cohomology H*dR(G) itself. Then, we show that when a flat connection A exists on a principal G-bundle P, we may construct a homomorphism EA: H*dR(G)→H*dR(P), which eventually shows that the bundle satisfies a condition for the Leray–Hirsch theorem. A similar argument is shown to apply to its adjoint bundle. As a corollary, we show that that both the flat principal bundle and its adjoint bundle have the real coefficient cohomology isomorphic to that of the trivial bundle.
Let $(X,L)$ be a polarized manifold over the complex number field with dim$X=n$. In this paper, we consider a conjecture of M. C. Beltrametti and A. J. Sommese and we obtain that this conjecture is true if $n=3$ and ${{h}^{0}}\,(L)\,\ge \,2$, or $\dim\,\text{Bs}|L|\le 0$ for any $n\ge 3$. Moreover we can generalize the result of Sommese.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.