Efforts to develop the next generation of aircraft with ever-increasing levels of performance – higher, farther, faster, cheaper – face great technical challenges. One of these technical challenges is to reduce structural weight of the aircraft. Another is to look to aircraft configurations that have been unrealizable to date. Both of these paths can lead to a rigid flex coupling phenomenon that can result in anything from poor flying qualities to the loss of an aircraft due to flutter. This has led to a need to develop an integrated flight and aeroelastic control capability where structural dynamics are included in the synthesis of flight control laws. Studies have indicated that the application of an integrated flight and aeroelastic control approach to a SensorCraft high-altitude long-endurance vehicle would provide substantial performance improvement(1,2). Better flying qualities and an expanded flight envelope through multi-flutter mode control are two areas of improvement afforded by integrated flight and aeroelastic control. By itself, multi-flutter mode control transforms the flutter barrier from a point of catastrophic structural failure to a benign region of flight. This paper discusses the history and issues associated with the development of such an integrated flight and aeroelastic control system for the X-56A aircraft.