In this paper, four new wideband small antennas based on the composite right/left-handed transmission line (CRLH-TL) structures are designed, tooled, and made. The proposed antennas are introduced with best in size, bandwidth, and radiation patterns. The physical size and the operational frequency of the antennas depend on size of the unit cells and the equivalent transmission line model parameters of the CRLH-TLs, including series inductance, series capacitance, shunt inductance, and shunt capacitance. To define characteristics of the antennas, the engraved J- and I-formed voids on the radiation patches are used. The physical sizes of the CRLH antennas are 0.45λ0 × 0.175λ0 × 0.02λ0, 0.428λ0 × 0.179λ0 × 0.041λ0, 0. 564λ0 × 0.175λ0 × 0.02λ0, and 0.556λ0 × 0.179λ0 × 0.041λ0 in terms of free-space wavelengths at the 7.5, 7.7, 7.5, and 7.7 GHz, respectively. These metamaterial antennas can be used for frequency bands from 7.5–16.8 GHz, 7.7–18.6 GHz, 7.25–17.8 GHz, and 7.8–19.85 GHz for VSWR < 2, which correspond to 74.4, 82.88, 84.23, and 87.16% practical bandwidths, respectively. Also, the ranges of the measured gains and radiation efficiencies of the recommended antennas are 0.1 dBi < G < 2.1 dBi and 20% < eff < 44.3%, and 0.8 dBi < G < 2.35 dBi and 23% < eff < 48.2%, for J-shaped antennas, whereas 0.1.15 dBi < G < 3.11 dBi and 30.24% < eff < 58.6%, and 1.2 dBi < G < 3.4 dBi and 32.4% < eff < 68.1% for I-shaped antennas, respectively.