Nanostructured WC-Co powders obtained by mechanical milling were investigated by combination of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) techniques. HRTEM image analysis shows that in the as-milled nanostructured powder, many WC grains contain stacking faults lying on the plane{10.0}. Analysis of phase images showed that these defects were nearly periodically ordered along the [10.0] direction. Based on these observations, a structural model is proposed for the WC grains with ordered stacking faults, which is in fact equivalent to a superstructure of WC with space group Amm2. When this model is introduced together with the normal WC structure (space group P6m2) into the Rietveld refinement, a much better agreement between the calculated and experimental XRD profiles is obtained. This study allowed obtaining the lattice parameters, grain size, microstrain and other structural information on the as-milled powders.