In this paper, we propose a sparse point-plane odometry used in structured environments. Compared to a point-based odometry, we add additional planar constraints into the process of optimization, making the results more reliable. A novel grid-based plane detection algorithm is proposed to cluster sparse points in the same planes. Then, the planes are parameterized by inverse normal and take part in the windowed optimization. By reducing the size of Hessian Matrix, the process of optimization converges faster. Compared to the original point-based odometry, the proposed method performs better on both robustness and efficiency in structured environments.