An optimal control problem for a model for stationary, low Mach
number, highly nonisothermal, viscous flows is considered.
The control problem involves the minimization of a measure of
the distance between the velocity field and a given target
velocity field. The existence of solutions of a boundary value
problem for the model equations is established as is the
existence of solutions of the optimal control problem. Then, a
derivation of an optimality system, i.e., a boundary value
problem from which the optimal control and state may be
determined, is given.