As high-dynamic range (HDR) and wide-color gamut (WCG) contents become more and more popular in multimedia markets, color mapping of the distributed contents to different rendering devices plays a pivotal role in HDR distribution eco-systems. The widely used and economic gamut-clipping (GC)-based techniques perform poorly in mapping WCG contents to narrow gamut devices; and high-performance color-appearance model (CAM)-based techniques are computationally expensive to commercial applications. In this paper, we propose a novel color gamut mapping (CGM) algorithm to solve the problem. By introducing a color transition/protection zone (TPZ) and a set of perceptual hue fidelity constraints into the CIE-1931 space, the proposed algorithm directly carries out CGM in the perceptually non-uniform space, thus greatly decreases the computational complexity. The proposed TPZ effectively achieves a reasonable compromise between saturation preserving and details protection in out-of-gamut colors. The proposed hue fidelity constraints reference the measurements of human subjects' visual responses, thus effectively preserve the perceptual hue of the original colors. Experimental results show that the proposed algorithm clearly outperforms the GC-CGM, and performs similarly or better than the expensive CAM-CGM. The proposed algorithm is real-time and hardware friendly. It is an important supplement of the SMPTE ST.2094-40 standard.