In the present paper a uniform asymptotic series is derived for the probability distribution of the sum of a large number of independent random variables. In contrast to the usual Edgeworth-type series, the uniform series gives good accuracy throughout its entire domain. Our derivation uses the fact that the major components of the distribution are determined by a saddle point and a singularity at the origin. The analogous series for the probability density, due to Daniels, depends only on the saddle point. Two illustrative examples are presented that show excellent agreement with the exact distributions.