In this study, finite element modeling of composite beams with distributed piezoelectric sensors and actuators which is based upon a coupled electromechanical model has been considered. For modeling of mechanical displacement through the thickness, a sinus model that satisfies continuity conditions of transverse shear stresses and the boundary conditions on the upper and lower surfaces of the beam has been employed. In the presented model, the number of unknowns is not dependent on the number of layers. The variation of electric potential in each piezoelectric layer has been modeled using layer-wise theory. By applying the virtual work principle (VWP), a formulation has been developed for a two-nodded Hermitian-2(n +1) layer-wise nodded element for a n-layered beam. The VWP leads to a derivation that could include dynamic analysis. However, in this study only static problems have been considered. Comparison of results obtained from this formulation with available works in the literature, demonstrates efficiency of proposed model in analysis of laminated beams under mechanical and electrical loadings.