Passive walking robots can walk on a slight downward slope powered only by gravity. We propose a novel control strategy based on forced entrainment to stabilize a three-dimensional quasi-passive walking robot in uphill and level walking by using torso control in the frontal plane and synchronization of lateral motion with swing leg motion. We investigated the robot's walking energy efficiency, energy transformation, and transfer in simulation. The results showed that the proposed method is effective and energy-efficient for uphill and level walking. The relationship between energy utilization rate of actuation and energy efficiency of the robot was revealed, and mechanical energy transformation and transfer were characterized.