Waterhemp has emerged as one of the most problematic weeds in agronomic crops in the Midwest because of an extended germination period and widespread occurrence of biotypes resistant to atrazine and sulfonylurea herbicides. However, the competitive effects of late-emerging cohorts on corn yield are not known. Field studies were conducted in 2001 and 2002 at Columbia, Novelty, and Albany, MO, to determine the effects of late-emerging waterhemp interference on corn growth, nitrogen (N) accumulation, and yield. Waterhemp emerged approximately 20 d after planting (DAP) and was treated at heights of 8, 15, 23, 31, 38, or 46 cm with directed applications of dicamba + diflufenzopyr followed by hand hoeing. Soil water status, corn leaf chlorophyll content, and corn and common waterhemp height were recorded at the time of waterhemp removal. N stress was detected with a chlorophyll meter at four of six removal timings at high waterhemp densities (362 or more plants/m2) but only at one of six removal timings at lower densities (82 or less plants/m2). Water stress was observed at five of the six removal timings at high densities but at none of the removal timings at low densities. High waterhemp densities reduced corn yield when allowed to reach 15 cm before removal, and yields were reduced 36% when not controlled. At low densities, yield losses did not occur unless waterhemp was allowed to remain with corn season long. Our research suggests that waterhemp is less competitive with corn than redroot pigweed, smooth pigweed, and Palmer amaranth. In addition, low densities of late-emerging waterhemp would not warrant removal to protect corn yield.