We investigate some preservation properties of two nonparametric classes of survival distributions and their duals, under appropriate reliability operations. The aging properties defining these nonparametric classes are based on comparing the mean life of a new unit to the mean residual life function of the asymptotic remaining survival time of the unit under repeated perfect repairs. They are motivated from a point of view that realistic notions of degradation, applicable to repairable systems, should be based on contrasting some aspect of the remaining life of a repairable unit (under a given repair strategy, such as renewals) to the life of a new unit.