The flow of a viscous fluid disturbed by an oscillating plate of arbitrary initial phase is studied in present note. The exact solutions of the velocity and the shear stress are solved using a Laplace transform method. The velocity is derived in terms of complementary error functions and the shear stress on the boundary is given in the form of Fresnel integrals. Since the steady-state solutions are well known, our discussions are focused on the transient solutions. The transient state will disappear faster for the wall stress than that for the velocity field. Comparing the results corresponding to different initial phases, the cosine case reaches to the steady state more rapidly than the sine case.