Simple cells in striate cortex have been depicted as rectified linear operators, and complex cells have been depicted as energy mechanisms (constructed from the squared sums of linear operator outputs). This paper discusses two essential hypotheses of the linear/energy model: (1) that a cell's selectivity is due to an underlying (spatiotemporal and binocular) linear stage; and (2) that a cell's firing rate depends on the squared output of the underlying linear stage. This paper reviews physiological measurements of cat striate cell responses, and concludes that both of these hypotheses are supported by the data.