The purpose of this paper is to study the flow field of the combustion chamber in a simulated rotary engine by using a computational approach. A dynamic mesh technique is employed to overcome the moving and shape varying computational domain inside the combustion chambers as the rotor is spinning. The key parameters include spark plug timing, leading side spark plug location and intake port location, which are used to investigate their influences on flow field and combustion performance of a rotary engine. It was discovered, with a dual spark plug configuration, that better flame propagation could be obtained through the change of ignition timing. In addition, to change the leading side spark plug location, it was also found that combustion efficiency is improved by shortening the distance from the top dead center (TDC) center line, which is consistent with available experimental results. This research also discovered that the intake port should be properly located in order to prevent pressure loss in the combustion chamber during the compression stroke.