The elastic fields of a torsional dislocation loop in a homogeneous material are first derived. The solution is based on torsional symmetry. The stress and displacement solutions are then extended to the case of a torsional loop in a bi-material. A main utility of basic dislocation solutions is in fracture mechanics. In particular, circular loop solutions can be used in the modeling of both cylindrical and penny-shaped cracks. In the present study we use them to model a Mode III cylindrical crack via the application of a “distributed-dislocation technique”. Stress intensity factors at the crack tips are presented. The influences of crack radius and material pair on the stress intensity factor of interfacial cracks are investigated.