Dependence of quasistatic Wakefield and high harmonic generation on the pulse-shape of an ultrashort, intense, few-cycle laser in the reflected radiation from a thin dense plasma layer is investigated. The pulse envelopes considered are Gaussian, Lorentzian, and hyperbolic secant having identical full width at half maximum of intensity. The reflected radiation from the strongly driven surface plasma layer embodies a quasistatic Wakefield, which exists after the main pulse is passed over. A phase modulation is also experienced by the laser light upon reflection from plasma surface motion. As a result harmonics of center carrier frequency of the laser-pulse are generated in the reflected signal. Intensity of the laser harmonics and magnitude of the Wakefield in the reflected radiation are found to depend on the pulse-shape, number of cycles, carrier envelope phase difference, plasma density, angle of incidence, and intensity of the incident pulse.