We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we first show that for a locally compact amenable group $G$, every proper abstract Segal algebra of the Fourier algebra on $G$ is not approximately amenable; consequently, every proper Segal algebra on a locally compact abelian group is not approximately amenable. Then using the hypergroup generated by the dual of a compact group, it is shown that all proper Segal algebras of a class of compact groups including the $2\times 2$ special unitary group, $\mathrm{SU} (2)$, are not approximately amenable.
We investigate generalized amenability and biflatness properties of various (operator) Segal algebras in both the group algebra, ${{L}^{1}}\left( G \right)$, and the Fourier algebra, $A\left( G \right)$, of a locally compact group $G$.
A number of well-known results of Ghahramani and Loy on the essential amenability of Banach algebras are generalized. It is proved that a symmetric abstract Segal algebra with respect to an amenable Banach algebra is essentially amenable. Applications to locally compact groups are given.
Let G denote any locally compact abelian group with the dual group Γ. We construct a new kind of subalgebra L1(G) ⊗ΓS of L1(G) from given Banach ideal S of L1(G). We show that L1(G) ⊗гS is the larger amoung all strongly character invariant homogeneous Banach algebras in S. when S contains a strongly character invariant Segal algebra on G, it is show that L1(G) ⊗гS is also the largest among all strongly character invariant Segal algebras in S. We give applications to characterizations of two kinds of subalgebras of L1(G)-strongly character invariant Segal algebras on G and Banach ideal in L1(G) which contain a strongly character invariant Segal algebra on G.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.