We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For complex simple Lie algebras of types B, C, and D, we provide new explicit formulas for the generators of the commutative subalgebra $\mathfrak z(\hat {\mathfrak g})\subset {{\mathcal {U}}}(t^{-1}\mathfrak g[t^{-1}])$ known as the Feigin–Frenkel centre. These formulas make use of the symmetrisation map as well as of some well-chosen symmetric invariants of $\mathfrak g$. There are some general results on the rôle of the symmetrisation map in the explicit description of the Feigin–Frenkel centre. Our method reduces questions about elements of $\mathfrak z(\hat {\mathfrak g})$ to questions on the structure of the symmetric invariants in a type-free way. As an illustration, we deal with type G$_2$ by hand. One of our technical tools is the map ${\sf m}\!\!: {{\mathcal {S}}}^{k}(\mathfrak g)\to \Lambda ^{2}\mathfrak g \otimes {{\mathcal {S}}}^{k-3}(\mathfrak g)$ introduced here. As the results show, a better understanding of this map will lead to a better understanding of $\mathfrak z(\hat {\mathfrak g})$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.