For a derivation δ of a commutative Noetherian ${\mathbb C}$-algebra A, a homeomorphism is established between the prime spectrum of the Ore extension A[z;δ] and the Poisson prime spectrum of the polynomial algebra A[z] endowed with the Poisson bracket such that {A,A}=0 and {z,a}=δ(a) for all a ∈ A.