A subgroup A of a group G is said to be hereditarily G-permutable with a subgroup B of G, if $AB^x = B^xA$ for some element $x \in \langle A, B \rangle $. A subgroup A of a group G is said to be hereditarily G-permutable in G if A is hereditarily G-permutable with every subgroup of G. In this paper, we investigate the structure of a finite group G with all its Schmidt subgroups hereditarily G-permutable.