The random effects ANOVA model plays an important role in many psychological studies, but the usual model suffers from at least two serious problems. The first is that even under normality, violating the assumption of equal variances can have serious consequences in terms of Type I errors or significance levels, and it can affect power as well. The second and perhaps more serious concern is that even slight departures from normality can result in a substantial loss of power when testing hypotheses. Jeyaratnam and Othman (1985) proposed a method for handling unequal variances, under the assumption of normality, but no results were given on how their procedure performs when distributions are nonnormal. A secondary goal in this paper is to address this issue via simulations. As will be seen, problems arise with both Type I errors and power. Another secondary goal is to provide new simulation results on the Rust-Fligner modification of the Kruskal-Wallis test. The primary goal is to propose a generalization of the usual random effects model based on trimmed means. The resulting test of no differences among J randomly sampled groups has certain advantages in terms of Type I errors, and it can yield substantial gains in power when distributions have heavy tails and outliers. This last feature is very important in applied work because recent investigations indicate that heavy-tailed distributions are common. Included is a suggestion for a heteroscedastic Winsorized analog of the usual intraclass correlation coefficient.