The Brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random matrices N x N is interpreted as a system of N interacting Brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, we study the behaviour of this system when the number of particles N goes to infinity (through the empirical measure process). We prove that a limiting measure-valued process exists and is the unique solution of a deterministic second-order PDE. The uniform law on [-π;π] is the only limiting distribution of µt when t goes to infinity and µt has an analytical density.