We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Solutions like crowd screening and machine learning can assist systematic reviewers with heavy screening burdens but require training sets containing a mix of eligible and ineligible studies. This study explores using PubMed's Best Match algorithm to create small training sets containing at least five relevant studies.
Methods
Six systematic reviews were examined retrospectively. MEDLINE searches were converted and run in PubMed. The ranking of included studies was studied under both Best Match and Most Recent sort conditions.
Results
Retrieval sizes for the systematic reviews ranged from 151 to 5,406 records and the numbers of relevant records ranged from 8 to 763. The median ranking of relevant records was higher in Best Match for all six reviews, when compared with Most Recent sort. Best Match placed a total of thirty relevant records in the first fifty, at least one for each systematic review. Most Recent sorting placed only ten relevant records in the first fifty. Best Match sorting outperformed Most Recent in all cases and placed five or more relevant records in the first fifty in three of six cases.
Discussion
Using a predetermined set size such as fifty may not provide enough true positives for an effective systematic review training set. However, screening PubMed records ranked by Best Match and continuing until the desired number of true positives are identified is efficient and effective.
Conclusions
The Best Match sort in PubMed improves the ranking and increases the proportion of relevant records in the first fifty records relative to sorting by recency.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.