Wheat grain dormancy is a multigenic trait controlled both by R genes conferring red testa pigmentation and by other genes, at least one of which has a major effect in the embryo. Enhanced grain dormancy and red test colour are inherited as pleiotropic effects of dominant R alleles at triplicate loci in hexaploid wheat. However, polymorphism for R genes cannot account for the wide variation in dormancy observed among different redgrained varieties. A variety of different dominant R alleles all have equivalent effects on dormancy when introgressed into white-grained wheats, although the latter vary in dormancy both in the absence and in the presence of dominant R alleles. As a result, certain redgrained genotypes can exhibit intermediate dormancy, similar to that of some white-grained genotypes with different genetic backgrounds. A new major gene (Phs) was identified as controlling the difference between two red-grained cultivars with widely different dormancies. The Phs gene appeared to exert its effect in the embryo of the grain, in contrast to R gene expression in maternal testa tissue. Discrete genetic functions thus underlie physiologically distinct mechanisms of coatimposed dormancy and embryo-imposed dormancy in wheat