In addition to short sleep duration, reduced sleep quality is also associated with appetite control. The present study examined the effect of sleep fragmentation, independent of sleep duration, on appetite profiles and 24 h profiles of hormones involved in energy balance regulation. A total of twelve healthy male subjects (age 23 (sd 4) years, BMI 24·4 (sd 1·9) kg/m2) completed a 24 h randomised crossover study in which sleep (23.30–07.30 hours) was either fragmented or non-fragmented. Polysomnography was used to determine rapid-eye movement (REM) sleep, slow-wave sleep (SWS) and total sleep time (TST). Blood samples were taken at baseline and continued hourly for the 24 h period to measure glucose, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1) and melatonin concentrations. In addition, salivary cortisol levels were measured. Visual analogue scales were used to score appetite-related feelings. Sleep fragmentation resulted in reduced REM sleep (69·4 min compared with 83·5 min; P< 0·05) and preservation of SWS without changes in TST. In fragmented v. non-fragmented sleep, glucose concentrations did not change, while insulin secretion was decreased in the morning, and increased in the afternoon (P< 0·05), and GLP-1 concentrations and fullness scores were lower (P< 0·05). After dinner, desire-to-eat ratings were higher after fragmented sleep (P< 0·05). A single night of fragmented sleep, resulting in reduced REM sleep, induced a shift in insulin concentrations, from being lower in the morning and higher in the afternoon, while GLP-1 concentrations and fullness scores were decreased. These results may lead to increased food intake and snacking, thus contributing to a positive energy balance.