We study the measure of a typical cell in a Voronoi tessellation defined by n independent random points X1, . . ., Xn drawn from an absolutely continuous probability measure μ with density f in ℝd. We prove that the asymptotic distribution of the measure – with respect to dμ = f(x)dx – of the cell containing X1 given X1 = x is independent of x and the density f. We determine all moments of the asymptotic distribution and show that the distribution becomes more concentrated as d becomes large. In particular, we show that the variance converges to 0 exponentially fast in d. We also obtain a bound independent of the density for the rate of convergence of the diameter of a typical Voronoi cell.