We discuss long-memory properties and the partial sums process of the AR(1) process {Xt, t ∈ 𝕫} with random coefficient {at, t ∈ 𝕫} taking independent values Aj ∈ [0,1] on consecutive intervals of a stationary renewal process with a power-law interrenewal distribution. In the case when the distribution of generic Aj has either an atom at the point a=1 or a beta-type probability density in a neighborhood of a=1, we show that the covariance function of {Xt} decays hyperbolically with exponent between 0 and 1, and that a suitably normalized partial sums process of {Xt} weakly converges to a stable Lévy process.