The effect of dietary digestible protein (DP) and/or digestible energy (DE) levels on lysine (Lys) requirements, Lys utilisation efficiency and voluntary feed intake (VFI) were studied in rainbow trout fry when Lys was the first limiting indispensable amino acid or in excess in the diet. Two trials were conducted at 11·6°C with eighty-one experimental diets, containing 280 g DP/kg DM (low protein (LP), trial 1), 600 g DP/kg DM (high protein (HP), trial 1) or 440 g DP/kg DM (medium protein (MP), trial 2), 17 MJ DE/kg (low energy (LE)), 19·5 MJ DE/kg (medium energy (ME)) or 22 MJ DE/kg (high energy (HE)), and nine Lys levels from deeply deficient to large excess (2·3–36 g/kg DM). Each diet was given to apparent satiety to one group of fifty fry (initial body weight 0·85 g) for 24 (MP diets, trial 2) or 30 (LP and HP diets, trial 1) feeding days. Based on N gain data fitted with the broken-line model, the relative Lys requirement was significantly different with the dietary DP level, from 13·3–15·7 to 22·9–26·5 g/kg DM for LP and HP diets, respectively, but did not significantly change with the DE level for a same protein level. The Lys utilisation efficiency for protein growth above maintenance was constant across diets, suggesting no effect of either dietary DE or DP levels. In Lys excess, the VFI was markedly decreased by the DP level but not by the extra DE supply. Our results suggest that the relative Lys need is best expressed in terms of percentage of protein content for optimum fish feed formulation, at least in rainbow trout fry.