Dermatoglyphs are epidermal ridge configurations on the fingers, palms and soles that are formed during fetal development, and therefore only the intrauterine environment can have any influence on their formation. This study aims at investigating the genetic and environmental contribution in determining quantitative dermatoglyphic traits in 32 monozygotic (MZ) and 35 dizygotic (DZ) same-sex twins from the Albanian population of Kosovo. All genetic analyses were run in the statistical program Mx. After assumptions testing, based on the pattern of MZ–DZ correlations, univariate models were fitted to the data in order to estimate additive genetic (A), common (C) and individual (E) environmental influences for all variables. The exception was the atd-angle for which a model with nonadditive genetic (D) influences was tested, since DZ correlations were less than half of MZ correlations. Goodness of fit of the full ACE or ADE model was compared to the saturated model. The fit of nested models (AE, CE, DE or E) was compared to the full models (ACE or ADE). Our results indicate that additive genetic component strongly contributes to individual differences in finger ridge counts (49−81%), and weakly (0−50%) on the formation of the palmar ridge counts between the palmar triradii a, b, c, and d. The specific pattern found for the atd-angle implies the impact of a nonadditive genetic component, possibly the effect of a major gene. Further, more powered studies are needed to confirm this pattern, especially for resolving the issue of the huge difference in MZ and DZ twin similarity for the atd-angle palmar trait.