Motivated by the recent result in Samei and Wiersma (2020, Advances in Mathematics 359, 106897) that quasi-Hermitian groups are amenable, we consider a generalization of this property on discrete groups associated to certain Roe-type algebras; we call it uniformly quasi-Hermitian. We show that the class of uniformly quasi-Hermitian groups is contained in the class of supramenable groups and includes all subexponential groups. We also show that they are invariant under quasi-isometry.