The approximation of Banach space valued non-absolutely integrable functions by step functions is studied. It is proved that a Henstock integrable function can be approximated by a sequence of step functions in the Alexiewicz norm, while a Henstock–Kurzweil–Pettis and a Denjoy–Khintchine–Pettis integrable function can be only scalarly approximated in the Alexiewicz norm by a sequence of step functions. In case of Henstock–Kurzweil–Pettis and Denjoy–Khintchine–Pettis integrals the full approximation can be done if and only if the range of the integral is norm relatively compact.