The adsorption of poly(vinyl alcohol) (PVA) on montmorillonites saturated with calcium (Ca-Mt) and sodium (Na-Mt) as a function of the pH value and PVA concentration in aqueous solution was studied. Owing to the binding effect of the bivalent cation, the adsorption of PVA on Ca-Mt decreases as the pH of the suspension increases, whereas adsorption on Na-Mt is unaffected by the suspension pH. The adsorption maximum of PVA (pH 6) on Ca-Mt was 151.2 mg of PVA g−1 of clay, which is considerably lower than that on Na-Mt (496.2 mg g−1). These adsorption data coincide with the basal spacings obtained for the clays: 1.72 and 2.26 nm for Ca-Mt and Na-Mt, respectively. Sodium permits a greater separation between the clay laminae than calcium, but in both clays the presence of the polymer gives rise to a material in which PVA is intercalated between the laminae and is also adsorbed on the external surface. Adsorption is a slow process and is irreversible in both clays.