A ‘metamorphic vermiculite’-like phase was identified in Ca-rich ancient ceramic sherds from excavations in NW Peloponnese, Greece. Archaeometric investigations have shown that the raw materials used in the production of ancient ceramics were derived from local Plio-Pleistocene sediments. Analysis by X-ray diffraction and scanning electron microscopy-energy dispersive spectroscopy showed that ‘metamorphic vermiculite’ is a common constituent phase of these sediments occurring in three texturally different types: as interstratified white mica-chlorite and chlorite-vermiculite, and white mica-(white mica-chlorite) stacks. In an attempt to elucidate the thermal transformation of ‘metamorphic vermiculite’ present in the calcareous raw materials, we produced experimental ceramics made from these local raw materials and fired them at 700, 750, 850, 950 and 1050°C in a static air furnace. The mixed-layered chlorite-vermiculite was transformed completely at ∼800°C contributing to the formation of new high-T minerals. The two other types of ‘metamorphic vermiculite’ retain their original lath-like shape up to 1050°C and only a few crystals show that they have undergone complete transformation at this temperature. In the latter crystals, numerous nanocrystals were formed sub-parallel to the former cleavages of ‘metamorphic vermiculite’ pseudomorphs, suggesting their contribution to the nucleation of high-T minerals (i.e. ferrian aluminian diopside, spinel, Fe oxides) by reactions with the available CaO. It is suggested that the firing conditions (i.e. maximum reaction temperature of 1050°C, reaction time of 1 h, oxygen atmosphere) which promote disequilibrium reactions, and the greater contribution of the white mica constituent against chlorite in some of the initial structures of ‘metamorphic vermiculite’ may be responsible for the delay of its thermal decomposition at 1050°C.