Raising the dietary PUFA:saturated fatty acids (SFA) ratio has been recommended for the prevention of CVD. However, a high PUFA:SFA (P:S) ratio diet enhances oxidative stress because PUFA are highly susceptible to lipid peroxidation. Thus, we focused on the role of the dietary P:S ratio and peroxidisability index (PI) value on serum and liver tissue and investigated the effects of dietary P:S ratios (0·4, 1·0, and 4·8) with a fixed PI value (81) on serum lipid parameters and hepatic enzyme activities (experiment 1). To elucidate whether those phenomena were unique to the P:S ratio, we examined the effects of dietary PI values (36, 81, 126, and 217) with a constant P:S ratio (1·0) (experiment 2). Female Sprague–Dawley rats weighing 240–280 g were fed experimental diets for 4 weeks. When dietary PI value was maintained at 81, serum HDL-cholesterol (HDL-C) increased with increasing dietary P:S ratio. When the P:S ratio was fixed at 1·0, HDL-C was the lowest with mid–low PI (MLPI) (PI value of 81). In both experiments, serum LDL-cholesterol:HDL-C ratio kept in the range of 0–2. The hepatic superoxide dismutase, catalase, and glutathione peroxidase (GSH-Px) activities and thiobarbituric acid reactive substance (TBARS) concentrations were the highest in the lowest dietary P:S ratio group (experiment 1). GSH-Px, glutathione-S-transferase, and TBARS were the lowest in rats fed the MLPI diet (experiment 2). In conclusion, these results indicate that a P:S ratio of 1·0–1·5 and a PI value of 80–90 in the diet are within a favourable range to reduce the risk of CVD.