The links between the Siberian Traps and the end-Permian mass extinction, and between the North Atlantic igneous province (NAIP) and the Paleocene–Eocene thermal maximum (PETM), demonstrate a critical role for large igneous provinces (LIPs) in the disruption of the Earth-surface carbon cycle (ESCC). High-precision ages for both volcanic provinces and the associated environmental crises show that, in both cases, the crisis was contemporaneous with the volcanism. The NAIP comprises two phases: the earlier Phase 1 (c. 61 Ma) and the much more voluminous Phase 2 (c. 56 Ma), linked to the opening of the NE Atlantic. The latter triggered the PETM, the largest Cenozoic hyperthermal. The Siberian Traps are significantly more voluminous than the NAIP, and triggered the end-Permian mass extinction. The masses of volcanic CO2 emitted from these provinces may have been much greater than previously suggested as substantial gas may come from intrusive bodies deep within the crust. Precursory warming due to the accumulation of volcanic CO2 in the atmosphere likely triggered the release of low-δ13C methane hydrate, although the masses of methane hydrate alone may have been insufficient to account for the observed temperature rises. The organic C was likely strongly supplemented by magmatically derived carbon and thermogenic carbon released during emplacement of sills and dykes into C-rich sedimentary units. More data are required on the volcanic flux rates in order to refine the cause–effect relationships between LIPs and the ESCC.