The structure and origin of the Pleistocene (Marine Isotope Stage [MIS] 5) coastal Barrier III in southern Brazil were investigated through analysis of lithofacies, numerical ages, and ground-penetrating radar (GPR) data obtained in outcrops and subsurface deposits. The stratigraphic succession is characteristic of transgressive barriers, with muddy lagoon bottom facies unconformably overlying an older unit (Barrier II) and overlain by landward-dipping lagoon margin and aeolian facies. The back-barrier lagoon was filled with sediments and shells transferred from the foreshore through overwash and/or inlets during the MIS 5e transgressive-high-stand phase, with a higher sea level that reached about +6 to +7 m relative to the present. Marine sediments and shells on the seaward side of the barrier dated to ~100–106 ka indicate another high stand at +4 to +5.1 m during MIS 5c. One shell dated to ~87 ka and aeolian deposits dated to ~82 and ~85 ka suggest a third high stand during MIS 5a that reached at least −2 m relative to the present. The two (possibly three) juxtaposed marine deposits show that Barrier III is a more complex unit than previously recognized, built by successive orbitally forced eustatic sea-level oscillations also recorded in other deposits along the Brazilian coast and worldwide.