This paper investigates task allocation for multiple robots by applying the game theory-based negotiation approach. Based on the initial task allocation using a contract net-based approach, a new method to select the negotiation robots and construct the negotiation set is proposed by employing the utility functions. A negotiation mechanism suitable for the decentralized task allocation is also presented. Then, a game theory-based negotiation strategy is proposed to achieve the Pareto-optimal solution for the task reallocation. Extensive simulation results are provided to show that the task allocation solutions after the negotiation are better than the initial contract net-based allocation. In addition, experimental results are further presented to show the effectiveness of the approach presented.