A method is presented for determining the point spread function (PSF) of an electron beam in a scanning electron microscope for the examination of near planar samples. Once measured, PSFs can be used with two or more low-resolution images of a selected area to create a high-resolution reconstructed image of that area. As an example, a 4× improvement in resolution for images is demonstrated for a fine gold particle sample. Since thermionic source instruments have high beam currents associated with large probe sizes, use of this approach implies that high-resolution images can be produced rapidly if the probe diameter is less of a limiting factor. Additionally, very accurate determination of the PSFs can lead to a better understanding of instrument performance as exemplified by very accurate measurement of the beam shape and therefore the degree of astigmatism.