Compounds of poly(3-hydroxybutyrate) (PHB) and carbon black (CB) with CB content ranging between 0.5 and 10% were prepared in an internal mixer. The effect of heating and cooling rates on the crystallization and melting of PHB/CB compounds was investigated by differential scanning calorimetry (DSC), and its morphology analyzed by optical microscopy (OM). Results showed that PHB and its compounds partially crystallize from the melt during cooling and partially cold crystallize on reheating, with the amount of polymer crystallizing in each stage depending strongly on the cooling rate. Melting is usually shown in DSC scans as complex (double) peaks, which are influenced by the heating/reheating thermal cycles. The melting and cold crystallization temperatures, and the rates of phase change depend strongly on the cooling and heating rates and CB content. CB acts as a nucleating agent, promoting the melt and cold crystallization of PHB as well as increasing the number of spherulites, with a mild effect on the melting transition. Light microscopy images suggest that a secondary crystallization of PHB also occurs during storage at room temperature.