Fluorcaphite [SrCaCa3(PO4)3F] is a rare strontium-calcium member of the apatite supergroup which was previously known only from the Khibiny and Lovozero alkaline complexes. This paper presents evidence of a third fluorcaphite occurrence. It was found in hydrothermally altered Lower Cretaceous teschenite, which forms an intrusive body (probably a sill) in the Lower Cretaceous siliciclastic flysch sediments at Tichá near Frenštát pod Radhoštěm, Silesian Unit, Outer Western Carpathians (Czech Republic). Fluorcaphite occurs as an accessory mineral in hydrothermal veins and in an adjacent alteration zone within the host teschenite. Vein-hosted fluorcaphite forms euhedral crystals and skeletal crusts enclosed in analcime while the teschenite-hosted fluorcaphite forms small overgrowths on older phenocrysts of magmatic apatite. Fluorcaphite from Tichá contains 0.50–1.97 Sr apfu, 2.96–4.49 Ca apfu, 0.59–1.09 F apfu and significantly lower Na (0.01–0.05 apfu) and LREE contents (up to 0.07 apfu). Fluorcaphite formed under hydrothermal conditions after solidification of the host teschenite during post-magmatic hydrothermal activity at temperatures probably between ∼150 and 300°C. The initial 87Sr/86Sr ratio of vein-hosted analcime +fluorcaphite (0.7063) is significantly higher than those of the host teschenite (0.7041). We therefore suggest a mix of strontium sources in the vein analcime+fluorcaphite: (1) from the host teschenite plus (2) from external source(s) including the Lower Cretaceous seawater and/or surrounding sedimentary rocks of the Silesian Unit. These data indicate an open-system fluid regime and the participation of various fluid sources during the alteration event giving rise to fluorcaphite.