The notion of ordered system signature, originally defined for independent and identical coherent systems, is first extended to the case of independent and non-identical coherent systems, and then some key properties that help simplify its computation are established. Through its use, a dynamic ordered system signature is defined next, which facilitates a systematic study of dynamic properties of several coherent systems under a life test. The theoretical results established here are then illustrated through some specific examples. Finally, the usefulness in the evaluation of aging used systems of the concepts introduced is demonstrated.